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Departamento de Matemáticas de la Universidad de Extremadura
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Abstract

The so-called Tingley’s Problem, see [5] can be stated as follows:

Question. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces and τ : SX → SY an onto
isometry. Is τ the restriction of some linear isometry τ̃ : X → Y ?

This question is closely related to the Mazur-Ulam Theorem, ([3]), in the sense that every
onto isometry τ̃ : (X, ‖·‖X)→ (Y, ‖·‖Y ) is linear provided τ̃(0) = 0 and to Mankiewicz Theorem
([2]), that ensures that every onto isometry τ : FX → FY between connected open subsets,
respectively, of (X, ‖·‖X) and (Y, ‖·‖Y ) extends to an affine isometry τ̃ : (X, ‖·‖X)→ (Y, ‖·‖Y ).
Namely, the relation with Mazur-Ulam Theorem has led to state that some normed space X
has the Mazur-Ulam Property if every τ : SX → SY extends linearly, no matter which space is
Y , see, e.g., [1]. In this talk we will expose some ideas that may solve the problem with tools
closer to the Geometry realm than to the Mathematical Analysis one. These can be found in
[4]. Our current efforts are mainly focused on the quest of metric invariants in the spheres



of normed spaces, with special interest in two-dimensional spaces where we have managed to
translate the problem to the following:

Question. Let (R2, ‖ · ‖X) and (R2, ‖ · ‖Y ) be two-dimensional normed spaces such that
(1, 0), (0, 1) ∈ SX ∩SY and τ : SX → SY an onto isometry with τ(1, 0) = (1, 0), τ(0, 1) = (0, 1).
Does SY equal SX?

This way to state the problem has led to some advances we will expose. On the other hand,
we have found a surprising metric invariant that can be seen as a generalization of the concept
of curvature of a planar curve and that may lead to intriguing questions. Namely,

Definition. Let (X, ‖ · ‖X) be a normed space, γ : [0, 1] → X a curve and x = γ(t) ∈ X
for some 0 < t < 1. Suppose that there is some c > 0 such that γ ∩ (x+ δSX) contains exactly
two points for every 0 < δ < c. We define the curvature of γ at x measured with ‖ · ‖X as the
following limit, whenever it exists:

(1) Kγ‖·‖X (x) =

√
lim
δ→0

δ − ‖a− a′‖X/2
(δ/2)3

= 2

√
lim
a,a′→x

2‖x− a‖X − ‖a− a′‖X
(‖x− a‖X)3

,

where a 6= a′ are the only points in γ such that ‖x− a‖X = ‖x− a′‖X = δ.

We have proved the following:

Theorem. The curvature of every sphere (α, β) + λS2 ⊂ R2, measured with ‖ · ‖2 (in the
sense of (1)) agrees in every point with 1

λ
.
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